\{Exercise (6) $\}$

1. Form the er. 1 that represent the following pair of lines:
i. $2 x+y=0 \quad \& \quad 3 x-2 y=0$

Ans.

$$
(2 x+y)(3 x-2 y)=0 \Rightarrow 6 x^{2}-x y-2 y^{2}=0
$$

ii. $2 x+y-1=0 \quad$ or $x-4 y+1=0 \quad$ by/ Moflammed Ans.

$$
\begin{aligned}
& (2 x+y-1)(x-4 y+1)=0 \Rightarrow \text { EM A } \\
& 2 x^{2}-8 x y+2 x+x y-4 y^{2}+y-x+4 y-1=0 \text {. Then } \\
& 2 x^{2}-7 x y-4 y^{2}+x+5 y-1=0
\end{aligned}
$$

4. Find the value of λ such that the two lines
$3 x^{2}-8 x y+\lambda y^{2}=0$ are Perpendicular.
Ans. for the pair of lines $2 x^{2}+2 h x y+b y^{2}=0$, they are Perpendicular when $a+b=0$. hence

$$
3+\lambda=0 \Rightarrow \lambda=-3
$$

5. Find the condition that one of the lines $a x^{2}+2 h x y+b y_{i}^{2}=0$ may Cincides with one of the lines $A x^{2}+2 H x y+B y^{2}=0$
Ans: see example (5) P 42
// // (7)

$$
\begin{aligned}
& \text { } \begin{array}{l}
y / \text { Mofammed } \\
\text { Emad }
\end{array}
\end{aligned}
$$ II I/ (6)

$$
\text { " } 11
$$

(8)
2. Show that each of the
find the angle bet - them revise ex (z) $p 3 z$

(iii) $x^{2}+8 x y+y^{2}+16 x+4 y+4=0$

$$
\left|\begin{array}{lll}
2 & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=\left|\begin{array}{lll}
1 & 4 & 8 \\
4 & 1 & 2 \\
8 & 2 & 4
\end{array}\right|=1(4-4)-4(16-16)+8(8-8)=0 \text {. Then }
$$

$x^{2}+8 x y+y^{2}+16 x+4 y+4=0$ is er.n of Pair of lines.

$$
\tan \theta=\frac{2 \sqrt{n^{2}-2 b}}{2+b} \Rightarrow \tan \theta=\frac{2 \sqrt{16-1}}{2} \Rightarrow \theta=75^{\circ} 31^{\prime} 20.96^{\prime \prime}
$$

3. Find λ such that the following eq. Vs s represent pair of lines: $^{\text {p }}$:

$$
\text { i. } 12 x^{2}-10 x y+2 y^{2}+11 x-5 y+\lambda=0
$$

Ans: $2=12, b=2, h=-5, g=\frac{11}{2}, f=-5 / 2, c=\lambda$, Then

$$
\begin{aligned}
& \left|\begin{array}{lll}
2 & h & g \\
h & b & f \\
9 & f & c
\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}
12 & -5 & \frac{11}{2} \\
-5 & 2 & -5 / 2 \\
\frac{11}{2} & -5 / 2 & \lambda
\end{array}\right|=0 \\
& 12\left(2 \lambda-\frac{25}{4}\right)+5\left(-5 \lambda+\frac{55}{4}\right)+\frac{11}{2}\left(\frac{25}{2}-11\right)=0 \\
& 24 \lambda-75-25 \lambda+\frac{275}{4}+\frac{275}{4}-\frac{121}{2}=0 \Rightarrow \lambda=2 \\
& \text { ii. } x^{2}+2 \lambda x y+y^{2}+6 x+2 y+9=0
\end{aligned}
$$

Ans: $a=1, h=\lambda, b=1, g=3, f=1, c=9$, Then

$$
\begin{aligned}
& \left|\begin{array}{lll}
2 & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0 \Rightarrow\left|\begin{array}{lll}
1 & \lambda & 3 \\
\lambda & 1 & 1 \\
3 & 1 & 9
\end{array}\right|=0 \\
& 1(9-1)-\lambda(9 \lambda-3)+3(\lambda-3)=0 \\
& 6 y / 7 \operatorname{yn} / \ln \text { med } \\
& \text { Egad } \\
& 8-9 \lambda^{2}+3 \lambda+3 \lambda-9=0 \\
& 9 \lambda^{2}-6 \lambda+1=0 \Rightarrow(3 \lambda-1)^{2}=0 \Rightarrow(3 \lambda-1)=0 \Rightarrow \lambda=\frac{1}{3}
\end{aligned}
$$

: Find the bisectors erin for
ii. $3 x^{2}+8 x y+4 y^{2}=0$

by/Mofammed

Ans. The err is Emad

$$
\begin{aligned}
\frac{x^{2}-y^{2}}{2-b} & =\frac{x y}{h} \Rightarrow \frac{x^{2}-y^{2}}{3-4}=\frac{x y}{4} \\
4 x^{2}-4 y^{2} & =-x y \Rightarrow 4 x^{2}+x y-4 y^{2}=0
\end{aligned}
$$

ii. $x^{2}+x y-6 y^{2}+7 x+31 y-18=0$

Ans. transform the er. D to point (h, k) to eliminate $1^{\text {st }}$ degree terms Put $x=x^{\prime}+h$ and $y=y^{\prime}+k$, Then

$$
\left(x^{\prime}+h\right)^{2}+\left(x^{\prime}+h\right)\left(y^{\prime}+k\right)-6\left(y^{\prime}+k\right)^{2}+7\left(x^{\prime}+h\right)+31\left(y^{\prime}+k\right)-18=0
$$

$$
x^{\prime 2}+2 h x^{\prime}+h^{2}+x^{\prime} y^{\prime}+k x^{\prime}+h y^{\prime}+h k-6 y^{\prime 2}-12 k y^{\prime}-6 k^{2}
$$

$$
+7 x^{\prime}+7 h+31 y^{\prime}+31 k-18=0
$$

or

$$
x^{\prime^{2}}+x^{\prime} y^{\prime}-6 y^{\prime 2}+x^{\prime}(2 h+k+7)+y^{\prime}(h-12 k+31)+\left(h^{2}+h k-6 k^{2}+7 h+31 k-18\right)=0
$$

to eleminat $1^{\text {st }}$ degree terms, Then

$$
2 h+k+7=0 \quad \& \quad h-12 k+31=0 \Rightarrow \text { solve } h=\frac{-23}{5}, k=\frac{11}{5}
$$

Then Te eq. n (1 will be

$$
x^{1^{2}}+x^{\prime} y^{\prime}-6 y^{\prime 2}=0
$$

Then the exr of bisectors will be

$$
\begin{gathered}
\frac{x^{\prime 2}-y^{\prime 2}}{1-(-6)}=\frac{x^{\prime} y^{\prime}}{1 / 2} \Rightarrow x^{\prime^{2}}-y^{\prime 2}=14 x^{\prime} y^{\prime} \\
x^{\prime 2}-14 x^{\prime} y^{\prime}-y^{\prime 2}=0 \Rightarrow \text { put } x^{\prime}=x+\frac{23}{5}, y^{\prime}=y-\frac{y^{\prime}}{5} \\
\left(x+\frac{23}{5}\right)^{2}-14\left(x+\frac{23}{5}\right)\left(y-\frac{11}{5}\right)-\left(y-\frac{11}{5}\right)^{2}=0 \\
x^{2}+\frac{46}{5} x+21.16-14(x y-2.2 x+4.6 y-10.12)-y^{2}+4.4 y-4.84=0 \\
x^{2}-14 x y-y^{2}+40 x-60 y+158=0 \quad \text { er. } 1 \text { of bisectors. }
\end{gathered}
$$

Eq..n of the pair of lines joining the origin to the points in which the line $\int x+m y=n \rightarrow P Q$ eq. n intersects the conic

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

is

$$
2 x^{2}+2 h x y+b y^{2}+(2 g x+2 f y)\left(\frac{1 x+m y}{n}\right)+c\left(\frac{1 x+m y}{n}\right)^{2}=0
$$

 Lin 2

Exercises:

1. Show that the lines joining the origin to the intersections of the Conic $7 x^{2}+8 x y-7 y^{2}+6 x-12 y=0$ and the line $2 x+y-1=0$ are at right angles.
Ans.

$$
2 x+y=1
$$

Homogenising conic er. n, Then

$$
\begin{aligned}
& 7 x^{2}+8 x y-7 y^{2}+(6 x-12 y)(2 x+y)=0 \\
& 7 x^{2}+8 x y-7 y^{2}+12 x^{2}-18 x y-12 y^{2}=0
\end{aligned}
$$

hence.
$19 x^{2}-10 x y-19 y^{2}=0$ is the en of the lines
ie. $2=19, \quad b=-19$
The condition of right angles pair of lines is $a+b=0 \rightarrow$ check for our lines

$$
19+(-19)=0 \rightarrow \text { Then }
$$

the lines $19 x^{2}-10 x y-19 y^{2}=0$ are at right angles.
3. Prove that the eq..n to the straight lines through the origin. each of which makes an angle α with the line $y=x$ is

$$
x^{2}-2 x y \sec 2 \alpha+y^{2}=0
$$

Ans
let the erin of the required lines is

$$
\left.2 x^{2}+2 h x y+b y^{2}=0\right\} \rightarrow \mathbb{C}\left\{\begin{array}{l}
-0,0) \\
(0,0)
\end{array}\right.
$$

now, the line $y=x$ can be considered as a bisector,
Then, for eq.N (1), the eq.n of bisectors are

$$
\begin{aligned}
& \frac{x^{2}-y^{2}}{2-b}=\frac{x y}{h}, 0 \\
& \text { or } x^{2}-y^{2}=\frac{(2-b)}{h} x y \Rightarrow \text { put } x=y \Rightarrow \frac{(2-b)}{h} x^{2}=0
\end{aligned}
$$

Then $a-b=0 \Rightarrow a=b \rightarrow$ sub. in (C

$$
\therefore 2 x^{2}+2 h x y+2 y^{2}=0 \rightarrow 2
$$

also, we have the angle bet' - lines in (2) are

$$
\tan \theta=\frac{2 \sqrt{n^{2}-2 b}}{2+b} \rightarrow \text { put } 2=b
$$

$\therefore \quad \tan \theta=\frac{2 \sqrt{n^{2}-2^{2}}}{22} \Rightarrow 2^{2} \cdot \tan ^{2} \theta=h^{2}-a^{2}$
$n^{2}=a^{2}\left(1+\tan ^{2} \theta\right) \cdots$ from Trignometric identities $1+\tan ^{2} \theta=\sec ^{2} \theta$
$\therefore h= \pm 2 \sec 2 \alpha \cdots$ sub. in (2), Then
compare $x^{2}-y^{2}=0$ with (I) we get

$$
\frac{2-b}{h}=0 \Rightarrow 2=b
$$

$2 x^{2} \pm 2 a \sec 2 \alpha \cdot x y+2 y^{2}=0 \cdots$ devide by a
$\therefore \quad x^{2}+2 x y \sec 2 x+y^{2}=0$ or $x^{2}-2 x y \sec 2 \alpha+y^{2}=0$
Gy/MoЋammed
Emad
2. If $l x+m y=1$ is a chord of the circle $x^{2}+y^{2}=2^{2}$ which subtends an angle 45° at the origin. Show that

$$
u\left[2^{2}\left(l^{2}+m^{2}\right)-1\right]=\left[2^{2}\left(l^{2}+m^{2}\right)-2\right]^{2}
$$

Ans.
The eq. 1 of the pairs $\overline{O Q} \& \overline{O P}$ will take the form.

also, we will obtain them by homogenising

$$
\begin{aligned}
& x^{2}+y^{2}-a^{2}=0 \text { as follow, } \\
& x^{2}+y^{2}-a^{2}(l x+m y)^{2}=0 \Rightarrow x^{2}+y^{2}-a^{2}\left(l^{2} x^{2}+2 l m x y+m^{2} y^{2}\right)=0 \\
& \left(1-2^{2} l^{2}\right) x^{2}+\left(1-2^{2} m^{2}\right) y^{2}+\left(-22^{2} l m\right) x y=0 \rightarrow \text {, }
\end{aligned}
$$

compare (1) and (2)

$$
\therefore A=1-2^{2} l^{2}, H=-2^{2} l m, \quad B=1-2^{2} m^{2}, \text { also }
$$

The angle $\theta=45$ have the following formula,

$$
\begin{aligned}
& \tan \theta=\frac{2 \sqrt{H^{2}-A B}}{A+B} \Rightarrow \tan 45=\frac{2 \sqrt{2^{4} l^{2} m^{2}-\left(1-2^{2} m^{2}\right)\left(1-2^{2} L^{2}\right)}}{2-2^{2}\left(l^{2}+m^{2}\right)} \\
& \therefore 4\left[2^{4} l^{2} m^{2}-1+2^{2} l^{2}+2^{2} m^{2}-2^{4} l^{2} m^{2}\right]=\left[2-2^{2}\left(l^{2}+m^{2}\right)\right]^{2} \text {, Then } \\
& \left.4\left[2^{2}\left(l^{2}+m^{2}\right)-1\right]=\left[2^{2}\left(l^{2}+m^{2}\right)-2\right]^{2}\right]
\end{aligned}
$$

Gy/Mofiammed Emad

